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A pattern-recognition-based method for the detection of

planar objects in protein or DNA/RNA crystal structure

determination is described. The procedure derives a set of

rotation-invariant numeric features from local regions in the

asymmetric unit of a crystallographic electron-density map.

These features, primarily moments of various orders, capture

different aspects of the local shape of objects in the electron

density. Feature classification is achieved using a linear

discriminant that is trained to optimize the contrast between

planar and nonplanar objects. In five selected test cases with

X-ray data spanning 2.0–3.0 Å resolution, the procedure

identified the correct location and orientation for almost all of

the double-ring and a majority of the single-ring planar

groups. The accuracy of the location of the plane centres is of

the order of 0.5 Å, even in moderately noisy density maps.
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1. Introduction

In macromolecular X-ray crystallography, electron-density

map interpretation is a key step towards determination of the

final structure. The procedure is generally time-consuming and

subjective (Kleywegt & Jones, 1996; Mowbray et al., 1999),

since the crystallographer has to apply biophysical and

chemical knowledge to visually interpret three-dimensional

patterns of electron density in terms of an atomic model.

However, given the growth of structural genomics initiatives

(Burley et al., 1999) and the desire to solve structures of

increasing complexity (Brown & Ramaswamy, 2007), time and

error tolerance is limited. Automated model-building proce-

dures can speed up the structure-determination process

considerably and also have the potential to minimize the

amount of error in the modelling.

Prior stereochemical knowledge is invaluable for crystallo-

graphic model building, in particular with low-resolution data.

The presence of planar groups of atoms is one important

stereochemical characteristic of a macromolecular structure

which may supply additional restraints during the refinement

(see, for example, Dodson et al., 1976). Apart from the

planarity of the main-chain peptide units, many amino acids

contain a planar atomic arrangement within their side chains.

Four of these, histidine, phenylalanine, tryptophan and tyro-

sine, have pronounced planar aromatic rings and account for

over 10% of all amino acids in proteins in the Swiss-Prot

database (Boeckmann et al., 2003). In addition, every

nucleotide in DNA and RNA contains a planar nitrogenous

base. During the process of model building, the electron

densities of planar aromatic side chains, e.g. that of trypto-

phan, are often easily identifiable owing to their size and



pronounced shape, even if the individual atoms are not

resolved. This allows the crystallographer to anchor the

sequence once the C� backbone has been traced (see, for

example, Pavelcik, 2004). In contrast to the protein peptide

unit, which is misshapen owing to the steric influence of

adjacent side chains (MacArthur & Thornton, 1996), the

delocalization of the � electrons in aromatic ring systems

permits only miniscule distortions from planarity. Studies of

refined structures show that the r.m.s.d. from planarity is about

0.04 Å in proteins (Hooft et al., 1996) and less than 0.001 Å in

accurately determined high-resolution small-molecule struc-

tures containing nitrogenous bases (Clowney et al., 1996).

Automated means of plane detection have already been

researched outside the field of structural biology. Sarti &

Tubaro (2002) used the Hough transform (Illingworth &

Kittler, 1988) to find planar fractures in rocks. However, the

Hough transform is ill-suited to finding aromatic rings in

macromolecular electron density because the size of the rings

is small compared with the size of the whole molecule. A

common alternative is template matching, in which the local

electron density is compared against a library of known

structural fragments. ARP/wARP (Lamzin & Wilson, 1997),

for example, uses density templates for the identification of

planar peptide units in protein chain tracing.

In this paper, we present a pattern-recognition-based

method for the direct detection of planar fragments during the

interpretation of electron density. The method uses the rela-

tionship between the pattern of atomic arrangement to be

recognized and the shape of the electron density surrounding

it. We extract a set of numerical values, called features, from

spherical regions in a density map. As the number of features

is much smaller than the number of density points from which

they are derived, a feature vector serves as a compact repre-

sentation of the local electron-density shape. Matching a

feature vector from a density region to a corresponding

feature vector derived from a training set provides the inter-

pretation of the planar density shape. This can in turn be

exploited for subsequent model building, either manual or

automated.

2. Methods

2.1. Search volume

The method described here finds the location and the

orientation of planar aromatic ring structures in three-

dimensional space and is outlined in the flowchart in Fig. 1.

The required input is an electron-density map covering the

crystallographic asymmetric unit. The electron density is

interpolated on a cubic grid with a default spacing of 0.6 Å.

The grid spacing reflects a trade-off between desired accuracy

and computational cost and can be reduced for maps com-

puted at a resolution higher than about 1.5 Å. To relieve the

pattern-recognition algorithms from dealing with crystallo-

graphic symmetry, the map is extended around the asymmetric

unit by 3.0 Å, the radius of the spherical region from which the

features are extracted.

2.2. Normalization of the raw density values

The electron-density map is usually computed on an arbi-

trary scale with its mean value set to zero. The density value at

any particular point only approximates the actual number of

electrons per unit volume. The extreme values, both positive

and negative, are not bounded and are often erroneous owing

to computational peculiarities. Thus, these raw density values

are not directly suitable for pattern-recognition methods.

Given the nature of macromolecules and the way that

X-rays interact with the atoms in the unit cell, it is reasonable

to assume that the higher the value of the electron density at a

certain point, the higher the likelihood that the point belongs

to the region containing ordered atoms. The reverse assump-

tion that lower electron density signifies lower likelihood does

not necessarily hold. Low density values can be found both in

between ordered atoms and in the disordered solvent region.

Hence, the likelihood that low electron-density values belong
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Figure 1
Flowchart of the plane-detection procedure. For each grid point in a
density map, a score corresponding to the centre of a planar object is
computed.



to the ordered region can also be high (Urzhumtsev et al.,

1989). Abrahams & Leslie (1996) have also utilized this fact,

although in a different formulation, for calculating a mask that

encompasses the molecule. The calculation of the mask is

based on the variation of the density in the ordered region,

which differs from the more uniform distribution of the

disordered solvent (see example in Fig. 2a).

We make use of the above for the normalization of the

electron density �(x) as follows. Firstly, we create the density

histogram, shown in Fig. 2(b), which gives the frequency p(�)

at which a certain density value � occurs. The same informa-

tion can also be provided by a cumulative density distribution

or the integral probability, P(�), which gives the frequency of

observing raw density values less than � (Fig. 2c). We now

define the normalized density value pnorm as the fraction of

grid points with a density value � and an integral probability

P(�) that lie in the ordered region (Fig. 3). These dependen-

cies were obtained from about 10 000 solved structures with

different resolutions and solvent contents and allowed esti-

mation of the values of pnorm with an average accuracy of 5%.

The quantity pnorm has the properties of a suitable weight

for pattern-recognition techniques: it has bounds, it is non-

negative and it reflects the significance of a certain map point

for building an atomic model. We also note the relatively high

values of pnorm at low values of the integral probability and

that the strength of this effect depends on the resolution of the

data.

2.3. Feature selection

Within a certain radius around each point inside the

asymmetric unit, rotation-invariant scalar features are com-

puted from the normalized density values and stored as a

feature vector. Features are trained on the local statistical and

geometric properties expected for density patterns containing

aromatic rings. The features are divided into two categories,

basic and advanced, where the advanced features are calcu-

lated only if the basic features are inconclusive (see Table 1

and below).

2.3.1. Moments and moment invariants of the density
distribution. The variations in the electron density can be

exploited by the use of moments. It is known that a well

behaved probability density function can be uniquely

described by exactly one infinite set of spatial moments (Hu,

1962). This forms the basis of the pattern-recognition tech-

nique employed here: if an unknown region of electron

density yields moments similar to those computed from a

known pattern, the atomic structure underlying that region
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Figure 2
Electron density and its distributions for the training case (PDB code
1mur). (a) Part of the electron density contoured at 1.5� above the mean;
(b) the histogram, a probability function, of the electron-density height,
p(�); (c) its integral probability function, or cumulant, P(�).

Figure 3
Likelihood of a point belonging to the ordered region as a function of its
integral probability. Experimental and modelled curves for a protein at
1.9 Å resolution with solvent content 59% (PDB code 1j4a) are shown in
blue and red, respectively. The corresponding curves for a protein at
2.5 Å resolution with solvent content 40% (PDB code 1onl) are shown in
yellow and green.



can be regarded as similar to that of the known pattern. A

general expression for the qth-order moment of pnorm over the

search volume V is

mq ¼
R
V

pq
normðxÞgðxÞ dx; ð1Þ

where g(x) is a weighting factor. The local variance, which

serves as a powerful numeric feature to separate zones of

protein and solvent (Abrahams & Leslie, 1996; Terwilliger &

Berendzen, 1999), is a special case of (1) with g(x) = 1,

m2 ¼ �
2 ¼

R
V

½pnormðxÞ � pV �
2 dx; ð2Þ

where pV denotes the mean normalized density in V. The local

variance does not contain information about the spatial

arrangement of the electron density in a volume V. One simple

way to introduce shape-dependence is to weight the density

with the radial distance by setting g(x) = ||x � xc||
q, where xc is

the centre of the search volume,

mq ¼
R
V

pq
normðxÞjjx� xcjj

q dx: ð3Þ

Now let us consider the case of q = 1, g(x) = xlymzn in (1). For

any non-negative integers l, m and n, the equation

mlmn ¼
R
V

pnormðxÞx
lymzn dx ð4Þ

defines the raw spatial moments of order l + m + n. While

these moments capture the spatial characteristics of the elec-

tron density inside the search volume, they are not invariant

under rotation. Sadjadi & Hall (1980) developed techniques to

transform second-order three-dimensional central moments to

moment invariants. A set of 12 moment

invariants up to order three can be

derived using group-theoretic tech-

niques. As the derivations are too un-

wieldy to be reproduced here, the

reader is referred to Lo & Don (1989)

for further details. These latter moment

invariants are used as features for

recognition of planar aromatic rings

(Table 1).

2.4. Classification

Once regions of density are repre-

sented as numeric feature vectors, we

use a linear discriminant analysis

(Fisher, 1936) to assign them to an

appropriate class. A linear discriminant

is a vector w = [w1 w2 . . . wn]T such that, when applied to any

normally distributed feature vector f, the scalar product

gðfÞ ¼ wTf þ w0 ð5Þ

predicts its class [see, for example, Bishop (1995) and Morris

(2004) for details]. In essence, Fisher’s discriminant maximizes

the ratio of the square of the distance between the class means

to the within-class variances along the direction w. For

convenience, an additive bias parameter w0 is introduced into

(5) to set the mean value of g(f) to zero.

We designed three discriminant vectors w for each type of

planar object, i.e. planes with one small ring, one large ring

and two rings (Table 2). The discriminants were trained on

data from a single protein–DNA complex as discussed in x2.6.

2.5. Finding the plane orientation

To find the plane orientation, we use the eigen decom-

position of the estimated covariance matrix,

COV ¼

m200 m110 m101

m110 m020 m011

m101 m011 m002

0
@

1
A; ð6Þ

computed around the centre of mass of the volume V. The

three eigenvalues, 0 � �1 � �2 � �3, measure the variance of

the normalized density along the corresponding orthogonal

eigenvectors. As planar objects mainly vary in two orthogonal

directions, one would expect �1 << �2 � �3, which means that

the ratios of the eigenvalues can also be used as features

(Table 1). Furthermore, the eigenvector v1 corresponding to

the smallest eigenvalue �1 defines the normal of the best (in a

least-squares sense) fitting plane through the density.

Some planar objects in the structure may be located close to

each other. For example, the electronic arrangement of the

bases in nucleic acids favours stacking of the nucleotides along

a strand (Fig. 4). Stacked bases are arranged parallel to each

other along the direction of the strand, with a base-to-base

distance of around 3.5 Å. It becomes clear that a sphere large

enough to encompass the density of a whole purine base will

also include the density from one of the neighbouring stacked
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Table 1
The features used for plane detection.

The discriminative power for the advanced features is computed from data first filtered using the basic
features as described in the text. Owing to the correlation between the features, the relative discrimination
values do not sum to 100%.

Feature type Description
Discriminative
power (7)

Relative
discrimination (%)

Basic features First and second order central moments
of the normalized density (1) and (2)

0.01 4

Radial moments of order 1 � q � 4 (3) 0.03 13
Advanced features Squared distance from the centre of

mass to the centre of the search
volume (Holton et al., 2000)

0.03 11

Isotropically weighted 12 moment
invariants (4) (Lo & Don, 1989)

0.12 44

Eigenvalues �1, �2 and �3

and their ratios �3/�1, �3/�2 and �2/�1

0.08 30

Anisotropically weighted 12 moment
invariants (4) (Lo & Don, 1989)

0.15 56

Table 2
Classification of the planar objects.

Class Members Description

C1 His Small single-ring structures
C2 C, T, U, Phe, Tyr Large single-ring structures
C3 A, G, Trp Double-ring structures
C0 Anything else Noise



bases. This in turn may confuse the solutions of the eigen

decomposition and the direction of minimum variance, v1, will

not necessarily be along the plane normal. Therefore, we first

compute a plane estimate by exponential downweighting,

exp(�||xi � xc||
2), of the electron density at each point xi,

where xc is the centre of the sphere. The covariance matrix (6)

is then recomputed, with the downweighting applied aniso-

tropically, exp[�||v̂v1�(xi � xc)||2], along the unit normal of the

plane estimate, v̂v1 = v1/||v1|| (Fig. 4).

2.6. Training

During training of the discriminant, spherical volumes

centred within 1 Å of the true plane centre are classified as

signal. The weights for Fisher’s projection (5) for all three

classes (Table 2) are derived from an (Fobs, ’calc) map of the

previously solved structure of Tn5 transposase bound to an

outside-end DNA duplex (PDB code 1mur; Lovell et al.,

2002). This is a protein–DNA complex refined to 2.5 Å reso-

lution, with 455 amino acids including ten histidines, ten

phenylalanines, 13 tryptophans and ten tyrosines. The 40

nucleotides of double-stranded DNA are distributed as eight

GC pairs and 12 AT pairs. Prior to training, the structure was

subject to ten cycles of stereochemically restrained refinement

with REFMAC (Murshudov et al., 1997) using default refine-

ment parameters and no cutoff on the X-ray data.

3. Results and discussion

3.1. The discriminant and the optimum search radius

Spherical volumes of different radii capture different

information about the underlying pattern. Intuitively, the

optimum diameter of the search volume should be equal to the

size of the largest search pattern, i.e. 6.6 Å in the case of

guanine. However, owing to the specifics of a macromolecular

structure, e.g. the base stacking shown in Fig. 4, large search

volumes may result in poorer discrimination of planar objects.

Therefore, we determined the optimum radius empirically by

evaluating its discriminative power,

D ¼
R1
�1

hðgÞ
N � hðgÞ

N � hðgÞ þ N0 � h0ðgÞ
dg; ð7Þ

where h(g) and h0(g) are the probability density distributions

for the projection value (5) for all signal classes taken together

and for the noise class, respectively. N and N0 are the sizes of

the signal classes and the noise class.

Fig. 5 presents the results of the search for the optimum

radius for all three signal classes. The discriminative power

increases until the radius reaches the value of 3.0 Å. For larger

radii the discriminant decreases sharply. We think that small

volumes are inconclusive for plane detection, while volumes

with radius higher than 3.0 Å start including surrounding

electron density, which confuses the pattern recognition.

3.2. Filtering out the signal

3.2.1. Interpretation of the discriminant analysis. For a

protein with a molecular weight of 100 kDa, the feature

vectors are computed at over one million grid points of the

density map, but only about 0.1% of these points lie in the

vicinity of a planar fragment. Thus, the task of identifying a

planar object is to find one correct solution among about 1000
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Figure 5
Discriminative power (7) for the advanced features as a function of the
radius of the search volume.

Figure 4
A sphere of 3 Å radius, shown as a red wire frame, centred on the guanine
of a d(TGT) triplet. The electron density, shown in blue, is contoured at
1.7� above the mean. The sphere intersects the density from the stacked
bases. The red curve shows the anisotropic weight applied to the points
inside the sphere in the direction along the normal of the base.



candidates. A random classifier would provide a discrimina-

tion of no better than N/(N + N0) = s/(s + 1), where s is the

signal-to-noise ratio. For convenience, hereafter we use

N0/(N + N0), the noise level, which ranges from zero to one,

rather than the signal-to-noise ratio, which can vary from zero

to infinity.

The Fisher discriminant described in x2.4 uses the features

to filter the signal from the noise. Usually, over 80% of the

mostly noise points are discarded after inspection of the basic

features (Table 1). This already yields a fivefold increase in the

relative amount of signal, bringing the noise level to 0.995.

Subsequent use of the advanced features provides a further

increase.

The final result is a trade-off between the completeness of

the signal (the fraction of the signal retained in the output)

and the amount of accepted noise. If, for example, we would

like to have all signal points in the output, we have to accept a

high amount of noise, also called false positives. Indeed, if we

choose all solutions with a Fisher projection above�0.05, then

all true class C3 planes (green curve in Fig. 6) will be selected

and thus the completeness of the solution will be 1.0.

However, the amount of accepted noise (red curve) will be 150

times the amount of signal, corresponding to a noise level of

0.993, which is not much better than the 0.995 obtained from

the use of the basic features alone. If instead we were to

choose solutions with the value of the Fisher projection above

0.25 (Fig. 6) this would entirely eliminate the noise. However,

the completeness of the signal would only be about 0.006.

Clearly, none of these ways of filtering out the signal are

satisfactory.

We therefore use a compromise approach and choose a

threshold on the Fisher projection that corresponds to some

small value of the activation function, shown in blue in Fig. 6,

which provides a solution with reasonably high completeness

and low noise level.

3.2.2. Kernel smoothing and peak picking. The result is a

set of points in three-dimensional space which generally

cluster around the centres of the true planar objects. To reduce

these clusters to single solutions, each point is spatially

smoothed using a three-dimensional Gaussian kernel with a

total variance of 1.5 Å2. A peak search is then performed in

the smoothed ‘map’ with the constraint that no two peaks are

allowed to be closer than 2.5 Å to each other. Each solution is

given a score, which is the ratio of its height to the height of

the top solution.

The completeness and noise level as a function of the

solution score are shown in Fig. 7. The two pairs of curves

corresponding to the two different cutoffs on the activation

function (black vertical lines in Fig. 6) are essentially identical.

This shows that the method is almost insensitive to the precise

value of the activation-function cutoff. As can be seen from

Fig. 7, there is a sharp drop in the completeness for scores

above 0.6. Hence, 0.6 is used as a second cutoff which deter-

mines the final set of solutions.

3.3. Test cases

Several test cases were used to assess the performance of

the method under various conditions. All models, except for

case 5, were refined for ten cycles with REFMAC using default

parameters and no resolution cutoff before density-map

computation and the plane search were attempted. In order to

evaluate the accuracy of the method, the detected planar

objects were compared with those in the deposited models.

The results are summarized in Table 3.

3.3.1. Case 1, a protein–RNA complex. The first test case is

a complex of a sarcin homologue bound to an analogue that
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Figure 6
Threshold selection for discrimination of double-ring planar objects, class
C3, in the training case (PDB code 1mur). The green and red curves show
the distribution of the signal and the noise, respectively. The total fraction
of the signal is only 0.005. The blue curve shows the activation function,
which reflects the probability of a point belonging to the signal class as a
function of g(f), under the assumption that the signal and noise classes are
of equal size. The solid vertical lines, corresponding to values of the
activation function of 0.1 and 0.3, indicate suitable thresholds for further
signal filtering.

Figure 7
Completeness and noise level as a function of the score for the C3 class in
the training case (PDB code 1mur). The red and green curves show the
completeness for the thresholds of the activation function at 0.1 and 0.3,
respectively. The blue and yellow curves show the corresponding noise
level. The solid vertical line indicates a suitable compromise between
completeness and noise level for selecting the final solutions.



mimics the target loop of rat 28S RNA (PDB code 1jbs; Yang

et al., 2001). The structure was determined at 2.0 Å resolution

with two NCS-related copies in the asymmetric unit. Each of

the two RNA 29-mers contains seven adenine, nine cytosine,

nine guanine and four uracil nucleotides. The protein part has

2 � 149 residues with 58 planar side chains.

The procedure correctly identified all double-ring planes

(class C3). The completeness of the identification of large

planes was lower at 0.69. Overall, 80% of the planes were

identified and the noise level was very small (Table 3).

3.3.2. Case 2, a protein–DNA complex. This test case is a

complex of the NFAT1 dimer bound around 15 base pairs of

double-stranded DNA at 2.6 Å resolution (PDB code 1p7h;

Giffin et al., 2003). There are two copies of the 286-residue

protein part in the asymmetric unit containing 124 planar side

chains. The DNA part contains 16 AT pairs and 14 GC pairs.

162 planes of 184 in the structure were identified, yielding

an overall completeness of 0.88. The histidines (class C1) were

the poorest identified, with a 71% success rate. The recogni-

tion of large planes was noticeably better at 93%. Essentially

all of the double-ring objects were found. The overall noise

level was high at 0.69. Most of the planes which are not found

were the same in NCS-related parts of the model. This indi-

cates that the method is dependent on the local quality of the

density map.

3.3.3. Case 3, a partial model of a protein–DNA complex.

Here the model from case 2 was used but the DNA part and

the solvent were removed. 312 solvent sites were then itera-

tively added using ARP/wARP (Lamzin & Wilson, 1997). The

purpose of this experiment is to assess the performance of

plane detection in the DNA region before the nucleic acids are

included in the model. Thus, case 3 mimics a real-life structure

determination from molecular replacement.

Fewer large-ring planes (71%) were built since the density

corresponding to the DNA region was unbiased and less clear.

An even smaller amount of the small and double-ring planes

were detected. The overall completeness was reduced to 0.58

and the noise level was higher at 0.77.

3.3.4. Case 4, a protein–RNA complex. Here, we use the

structure of an RNA–peptide complex of the alfalfa mosaic

virus (PDB code 1xok; Guogas et al., 2004) determined at

3.0 Å resolution. The RNA part consists of 36 modelled

nucleotides, which are split into two strands. There are 33

amino acids in two protein chains, where the only residues

with planar side chains are two tyrosines.

Half of the large-ring planes and almost all double-ring

planes were identified. In spite of the 3.0 Å resolution of the

data, the overall performance of the plane detection was

almost as good as in case 1, which is also a protein–RNA

complex but at 2.0 Å resolution. This can probably be attrib-

uted to the fact that there are almost no planes in the protein

part, which are the most difficult ones to determine using the

presented method.

3.3.5. Case 5, initial map for a protein–DNA complex. This

is a structure of the T domain from Xenopus laevis complexed

with a 24-nucleotide palindromic DNA duplex (PDB code

1xbr; Müller & Herrmann, 1997). The 367-residue protein part

contains 50 planar side chains. The structure was solved at

2.5 Å resolution by multiple isomorphous replacement using

three iodinated DNA derivatives and one selenomethionine

derivative. After twofold NCS averaging, solvent flattening

and histogram matching, the map correlation coefficient was

79%. This map was input to the plane-detection procedure

before any model building was attempted and thus this case

represents a real-life example of structure determination.

The method correctly identified 83% of the planes, with

almost all double-ring objects being found. This is similar to

cases 1 and 2. The histidines (class C1) have a lower success

rate; their completeness is only 0.50. The overall noise level is

about 0.50.

3.4. Performance of the method

The procedure uses a weighted combination of six different

types of pattern-recognition features, where each feature

provides its own contribution (Table 1). Of the advanced

features, the most powerful are the rotation-invariant

moments and, to a lesser extent, the eigenvalues and their

ratios. The squared distance from the centre of mass is less

informative. Taken together, the advanced features are

responsible for most of the discriminative power of the

procedure.

The completeness of the method, i.e. the fraction of the

signal retained in the output, decreases slightly as the reso-
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Table 3
Performance of the plane-detection method.

For each class, C1, C2 and C3, the number of detected planar fragments and the total number in the final model is quoted. The accuracy of the detected planar
objects for the protein and the DNA/RNA regions is also given.

R.m.s.d. from the centres
of the located planes
to those in the final model (Å)

Angular difference
between the located planes
and those in the final model (�)

Test case
Resolution
(Å)

Wilson B
(Å2)

Solvent
content C1 C2 C3

False
positives

Complete-
ness

Noise
level DNA/RNA Protein DNA/RNA Protein

Case 1, 1jbs 2.0 29 0.47 11/16 36/52 38/38 28 0.80 0.25 0.5 0.3 7 8
Case 2, 1p7h 2.6 59 0.59 34/48 91/98 37/38 356 0.88 0.69 0.5 0.4 5 10
Case 3, 1p7h

(no DNA)
2.6 59 0.59 20/48 70/98 16/38 355 0.58 0.77 0.6 0.5 8 15

Case 4, 1xok 3.0 62 0.57 10/20 16/18 34 0.68 0.57 0.6 0.3 7 21
Case 5, 1xbr 2.5 45 0.56 7/14 46/52 28/32 86 0.83 0.51 0.6 0.5 8 13



lution of the data is lowered (Table 3). The noise level

increases correspondingly, as can be seen from the number of

false positives. However, these results will need to be revisited

when larger training sets, ideally corresponding to different

resolutions and Wilson B factors of the data, are employed.

This is discussed in more detail in x4.

As can also be seen from Table 3, the accuracy in the

detected plane centre is relatively insensitive to resolution. We

attribute this to the fact that the chosen pattern-recognition

features capture general aspects of local electron density such

as symmetry, planarity and volume. The planes in the protein

region are located with a lower r.m.s.d. (�0.4 Å) compared

with those in nucleic acids (�0.6 Å). At the same time, their

orientation is less accurate (about 10–20�), while the accuracy

of the orientation for the planes in DNA/RNA is less than 10�.

This is presumably related to the smaller size of the planar

objects in proteins, which contain more single-ring and fewer

double-ring planes. Indeed, as planes increase in size it

becomes more difficult to define their centre, but once this is

achieved their orientation is more precisely determined.

The relatively high noise level contained in the final solu-

tions, rising from 0.25 in test case 1 to 0.77 in case 3, is not as

bad as it may look. We thoroughly examined all these false

positives and found that many of them do correspond to

planar or near-planar objects, which in this work were not

explicitly defined as signal classes (Table 4). The classification

for C1 (histidine residues) shows a tendency to pick up other

small planar side chains and puckered proline rings, which

together account for about 50% of the classified noise. The

classes C2 and C3 (large and double rings) often identify the

ribose in nucleic acids. Examples of false positives as well as

false negatives are shown in Fig. 8.

4. Outlook

The chosen features provide a flexible means of pattern

recognition and are able to detect planes of three different

types. Some inflexibility comes from the fixed radius of the

search volume, which is optimized for the overall discrimina-

tion of all three signal classes simultaneously (Fig. 5). Tuning

the radius of the sphere to each signal class could perhaps

provide higher performance, but the associated increased

CPU expenses will have to be assessed.

In many density-modification approaches, the natural

difference in local variation of electron density is exploited in

order to improve the phase quality. For example, the solvent
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Table 4
Distribution of false positives for the signal classes.

The average from the five test cases in Table 3 is shown.

Class

Planar protein
side chains:
Arg, Asn, Asp,
Gln, Glu (%)

Prolines
(%)

Peptides
(%)

Riboses
(%)

Remaining
noise (%)

Total
(%)

C1 38 10 6 6 40 100
C2 0 7 5 45 43 100
C3 5 5 10 40 40 100

Figure 8
Plane detection for case 2 (PDB code 1p7h). The locations and
orientations of the detected planes are indicated by the brown discs.
(a) Part of the protein region. Circles in red point to an undetected
histidine (top left) and an erroneously detected proline ring (middle
right). (b) A region around the base pairs of double-stranded DNA. Red
circles show an undetected cytosine (middle right) and a detected ribose
which is not a part of any of the signal classes (top left).



region tends to be flat, while the region of ordered matter

exhibits high deviation from the local mean. However, noise is

also characterized by high local variance. While the density

normalization employed in this method captures some of the

information contained in the variance, other design choices

were made to explicitly introduce noise tolerance. For

example, moment invariants of order higher than three are

currently avoided, although their potential to capture high-

frequency variations needs thorough investigation.

In the current implementation, a poor initial orientation of

the plane will not improve by iterating the eigen decomposi-

tion. Therefore, a localized implementation of the Hough

transform (Illingworth & Kittler, 1988) could be revisited

since the number of planar objects in a search volume suitable

for detection of planes is small enough for the Hough trans-

form to produce a ranked list of candidate orientations.

As could have been expected from a stereochemical point

of view, no difference in the performance is observed for plane

detection in DNA and RNA structures. Nevertheless, the

noise level is dependent on the data quality and resolution;

thus, the differences in the diffraction properties of DNA and

RNA may affect the method’s real-life performance.

The current serial implementation, where the plane score at

each grid point is computed independently from that at any

other grid point, delivers plane orientations and locations

within minutes on a modern workstation. A future parallel

implementation as well as further factorization could speed up

the execution of the search considerably.

Advanced construction of the training set is another

implementational topic of the scientific problem described in

this manuscript. Nevertheless, we should comment that our

training set was based on one structure only. Therefore, it

cannot be truly applicable to structures with a large diversity

in data resolution, solvent content or phase quality. In addi-

tion, the training set is somewhat biased towards nucleic acids,

which explains the noticeably lower success rate for histidines

(class C1). However, even for the class of double-ring planes

the problem is underdetermined, as the Fisher weights for all

features (37 parameters) are derived from only 33 class C3

contributors in the training set. The method trained on a

larger set will certainly perform better. Furthermore, if we

were to extend the signal classes to carboxylates, peptides,

prolines and riboses, the noise level in the final solutions

would be considerably reduced. The noise level could also be

reduced if the outcome of this method is used for subsequent

model building of nucleotides, proteins or ligands, for

example, where additional stereochemical considerations may

come into play. However, thorough discussion on planarity-

based model building is beyond the scope of this paper.

We thank Dr Christoph Müller for the provision of the

isomorphous replacement data for 1xbr.
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